10 Sheaf cohomology

Notation: Let (X, \mathcal{O}) be a ringed space over a ring R. We denote the category of \mathcal{O} -modules by \mathcal{O} -Mod and the category of modules over R by R-mod.

The aim is to measure the lack of exactness of the global section functor

$$\Gamma(X, -) : \mathcal{O}\text{-}\mathrm{Mod} \to R\text{-}\mathrm{mod}, \quad \mathcal{F} \mapsto \Gamma(X, \mathcal{F}) := \mathcal{F}(X)$$

by constructing a δ -functor extending $\Gamma(X, -)$. The general construction of derived functors is outlined in last week's talk. In order to apply the theory presented there, we have to check two properties:

Proposition 10.1. The functor $\Gamma(X, -)$ is left-exact.

Proof. This was essentially done in talks in the past, since one can compose $\Gamma(X, -)$ as

 $\mathcal{O}\text{-}\mathrm{Mod} \xrightarrow{F} \mathrm{Sh}(X, R) \xrightarrow{\mathrm{incl}} \mathrm{PrSh}(X, R) \xrightarrow{-(X)} R\text{-}\mathrm{mod}.$

F is the forgetful functor, which is exact. The inclusion functor is left-exact by [1], chapter 3, 6.9(i) and -(X) is the presheaf global section functor, which is exact by [1], chapter 3, 6.9(iv).

Proposition 10.2. The category O-Mod has enough injectives.

Proof. Let \mathcal{F} be an \mathcal{O} -module. For every $x \in X$, the stalk \mathcal{F}_x at x is an \mathcal{O}_x -module. Since \mathcal{O}_x is a ring, and we have proven, that S-mod has enough injectives for any ring S, we find an embedding $\mathcal{F}_x \hookrightarrow \mathcal{E}_x$, where \mathcal{E}_x is an injective \mathcal{O}_x -module.

The module \mathcal{E}_x is a sheaf on $\{x\}$ and yields an \mathcal{O} -module $j_{x*}\mathcal{E}_x$ via the inclusion $j_x : \{x\} \to X$, where j_{x*} denotes the direct image functor induced by j_x . One can prove, that it is right adjoint to the functor j_x^* , which is induced by the restriction $\mathcal{F} \mapsto \mathcal{F}|_x$.

We define $\mathcal{E} := \prod_{x \in X} j_{x*} \mathcal{E}_x$ (the product in \mathcal{O} -Mod). With the universal property of the product and the adjunction $j_{x*} \vdash j_x^*$ we obtain

$$\operatorname{Hom}_{\mathcal{O}}(\mathcal{G}, \mathcal{F}) = \prod_{x \in X} \operatorname{Hom}_{\mathcal{O}}(\mathcal{G}, j_{x*}\mathcal{E}_x) = \prod_{x \in X} \operatorname{Hom}_{\mathcal{O}_x}(\mathcal{G}_x, \mathcal{E}_x)$$
(10.1)

for every \mathcal{O} -module \mathcal{G} . By setting $\mathcal{F} = \mathcal{G}$, we get a monomorphism $\mathcal{F} \hookrightarrow \mathcal{E}$ induced by the stalkwise monomorphisms $\mathcal{F}_x \hookrightarrow \mathcal{E}_x$. To prove, that \mathcal{E} is injective, we note that \mathcal{E}_x is injective for every $x \in X$. Hence, $\operatorname{Hom}_{\mathcal{O}_x}(-, \mathcal{E}_x)$ is exact. Then, by (10.1), $\operatorname{Hom}_{\mathcal{O}}(-, \mathcal{E})$ is exact and \mathcal{E} therefore injective. \Box

Theorem 10.3. There is a universal δ -functor

$$(H^n(X, -): \mathcal{O}\text{-Mod} \to R\text{-mod}, \delta)_{n \ge 0}$$

over $\Gamma(X, -)$, i.e.,

(a) $H^n(X, -)$ are additive functors for $n \ge 0$, with $H^n(X, -) = \Gamma(X, -)$,

(b) for every exact sequence

 $0 \longrightarrow \mathcal{F}' \longrightarrow \mathcal{F} \longrightarrow \mathcal{F}'' \longrightarrow 0$

of \mathcal{O} -modules, there exists a family of R-module homomorphisms $\delta : H^n(X, \mathcal{F}') \to H^{n+1}(X, \mathcal{F}')$, $n \ge 0$, called **connecting homomorphisms**,

satisfying

(1) for every short exact sequence (SES)

 $0 \longrightarrow \mathcal{F}' \longrightarrow \mathcal{F} \longrightarrow \mathcal{F}'' \longrightarrow 0$

of \mathcal{O} -modules, the sequence

is exact

(2) for every morphism

of SES of \mathcal{O} -modules, the diagram

commutes.

(3) The δ -functor is universal in the sense, that for any δ -functor $(F^n, \delta)_{n\geq 0}$ extending $\Gamma(X, -)$, there exists a unique family of morphisms of functors $\varphi^n : H^n(X, -) \to F^n$ compatible with δ , such that $\varphi^0 = \text{id}$.

A universal δ -functor extending $\Gamma(X, -)$ is unique up to unique isomorphism. $H^n(X, \mathcal{F})$ is called the n^{th} cohomology of X with coefficients in \mathcal{F} .

Proof. Talk 9, $H^n(X, -) := R^n \Gamma(X, -)$.

- **Remark.** In comparison with the p.o.v. in algebraic topology, the \mathcal{O} -module is the "variable" in our case here, whereas the topological space X is the "variable" in algebraic topology. In algebraic topology, the construction of, for example, **singular** cohomology is explicit, in the sense, that one explicitly constructs a complex from X and takes the cohomology of this complex. For X locally contractible, one can prove $H^n(X, R_X) \cong H^n_{sing}(X, R)$, where R_X is the locally constant sheaf.
 - For easier computation, one might choose a greater class of objects to resolve a given O-module, compared to injective resolutions. Obviously, the aim is to compute the same thing! There are some options, e.g., acyclic resolutions and some, that particularly work only in O-Mod, i.e., by using "flabby" sheaves, which even give canonical resolutions "Godement resolution" ... more will come next year.

Definition 10.4. A \mathcal{O} -module \mathcal{I} is called $acyclic^1$, iff $H^n(X,\mathcal{I}) = 0$ for all n > 0. For an \mathcal{O} module \mathcal{F} , an *acyclic resolution* is an exact sequence $0 \to \mathcal{F} \to \mathcal{I}^0 \to \mathcal{I}^1 \to \ldots$, such that \mathcal{I}^n is
acyclic for every $n \ge 0$. We denote the sequence by $0 \to \mathcal{F} \to \mathcal{I}^{\bullet}$.

Example. Injective \mathcal{O} -modules are acyclic by design and injective resolutions of \mathcal{O} -modules are acyclic resolutions.

Theorem 10.5. Let $0 \to \mathcal{F} \to \mathcal{I}^{\bullet}$ be an acyclic resolution of an \mathcal{O} -module \mathcal{F} . Then,

$$H^n(X,\mathcal{F}) \cong H^n(\Gamma(X,\mathcal{I}^{\bullet})),$$

canonical, for all $n \ge 0$. The R-module $H^n(\Gamma(X, \mathcal{I}^{\bullet}))$ denotes the cohomology of a complex, i.e.,

$$H^{n}(\Gamma(X,\mathcal{I}^{\bullet})) := H^{n}(0 \to \Gamma(X,\mathcal{I}^{0}) \to \Gamma(X,\mathcal{I}^{1}) \to \dots) := \frac{\ker(\Gamma(X,\mathcal{I}^{n}) \to \Gamma(X,\mathcal{I}^{n+1}))}{\operatorname{im}(\Gamma(X,\mathcal{I}^{n-1}) \to \Gamma(X,\mathcal{I}^{n}))}.$$

Proof. For the case n = 0, we apply $\Gamma(X, -)$ to the exact sequence $0 \to \mathcal{F} \to \mathcal{I}^0 \to \mathcal{I}^1$. This yields the exact sequence

$$0 \longrightarrow \Gamma(X, \mathcal{F}) \longrightarrow \Gamma(X, \mathcal{I}^0) \longrightarrow \Gamma(X, \mathcal{I}^1).$$

Therefore we have

$$H^{0}(X,\mathcal{F}) = \Gamma(X,\mathcal{F}) = \ker(\Gamma(X,\mathcal{I}^{0}) \to \Gamma(X,\mathcal{I}^{1})) = H^{0}(\Gamma(X,\mathcal{I}^{\bullet})),$$

which shows the statement. For the case $n \ge 1$, we set $\mathcal{I}^{-1} := \mathcal{K}^0 := \mathcal{F}$ and for $p \ge 1$

$$\mathcal{K}^p := \operatorname{coker}(\mathcal{I}^{p-2} \to \mathcal{I}^{p-1}) \cong \operatorname{im}(\mathcal{I}^{p-1} \to \mathcal{I}^p) = \operatorname{ker}(\mathcal{I}^p \to \mathcal{I}^{p+1}),$$

¹We can define acyclicity more generally for any left-exact functor $F : \mathcal{C} \to \mathcal{D}$, for \mathcal{C} having enough injectives: an object \mathcal{I} is called *F*-acyclic, iff $\mathbb{R}^n F(\mathcal{I}) = 0$ for all n > 0.

where the isomorphism is induced by the map $\mathcal{I}^{p-1} \to \mathcal{I}^p$. From the exact sequence $0 \to \mathcal{K}^p \to \mathcal{I}^p \to \mathcal{I}^{p+1}$, we obtain in the same manner as above

$$H^{0}(X, \mathcal{K}^{p}) = \ker(H^{0}(X, \mathcal{I}^{p}) \to H^{0}(X, \mathcal{I}^{p+1}))$$
 (10.2)

for all $p \geq 1$. This yields also $H^0(X, \mathcal{K}^p) \hookrightarrow H^0(X, \mathcal{I}^p)$ and so

$$\operatorname{im}(H^0(X,\mathcal{I}^{n-1}) \to H^0(X,\mathcal{K}^n)) = \operatorname{im}(H^0(X,\mathcal{I}^{n-1}) \to H^0(X,\mathcal{I}^n)).$$
 (10.3)

The SES

 $0 \longrightarrow \mathcal{K}^p \longrightarrow \mathcal{I}^p \longrightarrow \mathcal{K}^{p+1} \longrightarrow 0$

yields the long exact sequence of cohomology

where the cohomology vanishes as marked above because of acyclicity. Hence, $H^n(X, \mathcal{K}^{p+1}) \cong H^{n+1}(X, \mathcal{K}^p)$. Also, from the long exact sequence (for p = n - 1)

$$\dots \longrightarrow H^0(X, \mathcal{I}^{n-1}) \longrightarrow H^0(X, \mathcal{K}^n) \longrightarrow H^1(X, \mathcal{K}^{n-1}) \longrightarrow \underbrace{H^1(X, \mathcal{I}^{n-1})}_{=0} \longrightarrow \dots,$$

we get

$$H^1(X, \mathcal{K}^{n-1}) \cong \frac{H^0(X, \mathcal{K}^n)}{\operatorname{im}(H^0(X, \mathcal{I}^{n-1}) \to H^0(X, \mathcal{K}^n))}$$

with the homomorphism theorem. Inductive by using the isomorphism derived above, and since $\mathcal{F} = \mathcal{K}^0$, we obtain

$$H^{n}(X,\mathcal{F}) = H^{n}(X,\mathcal{K}^{0}) \cong \ldots \cong H^{1}(X,\mathcal{K}^{n-1})$$
$$\cong \frac{H^{0}(X,\mathcal{K}^{n})}{\operatorname{im}(H^{0}(X,\mathcal{I}^{n-1}) \to H^{0}(X,\mathcal{K}^{n}))} = H^{n}(\Gamma(X,I^{\bullet}))$$

where we used (10.2) and (10.3).

Theorem 10.6. Let $\Phi : (X, \mathcal{O}_X) \to (Y, \mathcal{O}_Y)$ be a morphism of ringed spaces over R. Then, the direct image functor $\Phi_* : \mathcal{O}_X$ -Mod $\to \mathcal{O}_Y$ -Mod is left exact and there is a universal δ -functor $(R^n\Phi_*: \mathcal{O}_X$ -Mod $\to \mathcal{O}_Y$ -Mod, $\delta)_{n\geq 0}$ over Φ_* . Hence, for every short exact sequence

$$0 \longrightarrow \mathcal{F}' \longrightarrow \mathcal{F} \longrightarrow \mathcal{F}'' \longrightarrow 0$$

of \mathcal{O} -modules, there is a long exact sequence

$$0 \longrightarrow \Phi_* \mathcal{F}' \longrightarrow \Phi_* \mathcal{F} \longrightarrow \Phi_* \mathcal{F}'' \longrightarrow \delta$$

$$\overset{\delta}{\longrightarrow} R^1 \Phi_* \mathcal{F}' \longrightarrow R^1 \Phi_* \mathcal{F} \longrightarrow R^1 \Phi_* \mathcal{F}'' \longrightarrow \delta$$

$$\overset{\delta}{\longrightarrow} R^2 \Phi_* \mathcal{F}' \longrightarrow R^2 \Phi_* \mathcal{F} \longrightarrow R^2 \Phi_* \mathcal{F}'' \longrightarrow \dots$$

of \mathcal{O}_Y -modules.

Proof. Let $\phi : X \to Y$ be the underlying continuous map of Φ and $0 \to \mathcal{F}' \to \mathcal{F} \to \mathcal{F}'' \to 0$ be a SES in \mathcal{O}_X -Mod, $V \subseteq Y$ open and $U := \phi^{-1}(V)$. Then,

$$0 \longrightarrow \Gamma(U, \mathcal{F}') \longrightarrow \Gamma(U, \mathcal{F}) \longrightarrow \Gamma(U, \mathcal{F}'').$$

is exact in *R*-mod and since $\Gamma(U, \mathcal{F}) = \Gamma(V, \Phi_*\mathcal{F})$ (analogue for $\mathcal{F}', \mathcal{F}''$) the sequence

$$0 \longrightarrow \Gamma(V, \Phi_* \mathcal{F}') \longrightarrow \Gamma(V, \Phi_* \mathcal{F}) \longrightarrow \Gamma(V, \Phi_* \mathcal{F}'').$$

is also exact in R-mod. Because V is arbitrary, U is arbitrary and therefore

$$0 \longrightarrow \Phi_* \mathcal{F}' \longrightarrow \Phi_* \mathcal{F} \longrightarrow \Phi_* \mathcal{F}''.$$

is exact in \mathcal{O}_Y -Mod. Hence, Φ_* is left exact. The existence of the universal δ -functor follows from the talk last week.

Remark. This can be seen as a generalization of the cohomology functor we introduced above. We recover $H^n(X, -)$ by setting $Y = \{*\}$ to be the one-point space and $\mathcal{O}_Y(Y) = R$ (since there is only one stalk). For $\Phi : X \to Y$, the constant morphism, we obtain $R^n \Phi_* = H^n(X, -)$, since we can identify the category of \mathcal{O}_Y -modules with the category of R-modules.

Theorem 10.7. Let Γ' be the composite functor

$$\mathcal{O}\text{-}\mathrm{Mod} \xrightarrow{F} \mathbb{Z}_X\text{-}\mathrm{Mod} \xrightarrow{\Gamma} \mathbb{Z}\text{-}\mathrm{mod},$$

where F denotes the forgetful functor, $\Gamma := \Gamma(X, -)$ and \mathbb{Z}_X the constant sheaf with values in \mathbb{Z} . Then, there is a natural isomorphism of δ -functors

$$R^{n}\Gamma' \cong (R^{n}\Gamma) \circ F = H^{n}(X, F(-)).$$

In other words, we may compute the cohomology of an \mathcal{O} -module, as if it was just a sheaf of Abelian groups and also make use of resolutions in this category.

Proof. We may apply theory from last week's talk. To do so, we have to check, that F transforms injectives in \mathcal{O} -Mod into acyclic \mathbb{Z}_X -modules, see chapter 5, 3.13 and 3.15 in [1].

References

- [1] B. R. Tennison, *Sheaf Theory*, Cambridge University Press, **1975**.
- [2] T. Wedhorn, *Manifolds, Sheaves, and Cohomology*, Springer Spektrum Wiesbaden, 2016.
- [3] C. Dahlhausen, Algebra and Topology, part II, Lecture Notes, 2020.