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10 Sheaf cohomology

Notation: Let (X, O) be a ringed space over a ring R. We denote the category of O-modules by
O-Mod and the category of modules over R by R-mod.

The aim is to measure the lack of exactness of the global section functor
I'X,—): O-Mod - R-mod, F+—I'(X,F):=F(X)

by constructing a d-functor extending I'(X, —). The general construction of derived functors is
outlined in last week’s talk. In order to apply the theory presented there, we have to check two

properties:
Proposition 10.1. The functor I'(X, —) is left-exact.

Proof. This was essentially done in talks in the past, since one can compose I'(X, —) as

O-Mod —F— Sh(X, R) —™L, PrSh(X, R) —°% R-mod.
F is the forgetful functor, which is exact. The inclusion functor is left-exact by [1], chapter 3, 6.9(i)
and —(X) is the presheaf global section functor, which is exact by [1], chapter 3, 6.9(iv). O

Proposition 10.2. The category O-Mod has enough injectives.

Proof. Let F be an O-module. For every x € X, the stalk F, at x is an O -module. Since O, is a
ring, and we have proven, that S-mod has enough injectives for any ring .S, we find an embedding
Fz — &z, where &, is an injective O, -module.

The module &, is a sheaf on {x} and yields an O-module j;.&; via the inclusion j, : {z} — X,
where j,. denotes the direct image functor induced by j,. One can prove, that it is right adjoint
to the functor j¥, which is induced by the restriction F +— F|,.

We define € := [[,cx jz«&s (the product in O-Mod). With the universal property of the product

and the adjunction jz. - jF we obtain

Homp (G, F) = H Homp (G, joss) = H Homop, (G, &) (10.1)
reX zeX

for every O-module G. By setting F = G, we get a monomorphism F — £ induced by the stalkwise
monomorphisms F, < &,. To prove, that £ is injective, we note that &£, is injective for every z € X.
Hence, Homp, (—, &;) is exact. Then, by (10.1]), Homp(—, &) is exact and & therefore injective. [

Theorem 10.3. There is a universal §-functor
(H"(X,—):O-Mod — R-mod , 0),

over I'(X, —), i.e.,
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(a) H"(X,—) are additive functors for n >0, with H"(X,—) =T'(X, —),

(b) for every exact sequence

0 F F F 0

of O-modules, there exists a family of R-module homomorphisms § : HY(X, F") — H" Y X, F"),
n > 0, called connecting homomorphisms,

satisfying

(1) for every short exact sequence (SES)

0 F F F! 0

of O-modules, the sequence

0 — > TI'(X,F) — > (X, F) —— T'(X,F")

0
HY (X, F) —— HY(X,F) —— HYX,F")

o
H>(X, F) — H*(X,F) — H*}(X,F') — ...

15 exact

(2) for every morphism

0 F F F 0
I
0 g’ g g" 0

of SES of O-modules, the diagram

s HMX,F) —— HMX,F) —— H(X,F") —" H" (X, F) — ...

| | l l

% H"(X,G) —— H"(X,G) —— H™(X,G") —>— H""(X,G) —— ...
commutes.

(3) The §-functor is universal in the sense, that for any o-functor (F™,8)n>0 extending I'(X, —),
there exists a unique family of morphisms of functors ™ : H"(X,—) — F™ compatible with
8, such that ©° = id.

A universal §-functor extending T'(X, —) is unique up to unique isomorphism. H"™(X,F) is called

the n™* cohomology of X with coefficients in F.
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Proof. Talk 9, H"(X, —) := R"T'(X, —). 0

Remark. e In comparison with the p.o.v. in algebraic topology, the O-module is the “variable”
in our case here, whereas the topological space X is the “variable” in algebraic topology.
In algebraic topology, the construction of, for example, singular cohomology is explicit, in
the sense, that one explicitly constructs a complex from X and takes the cohomology of this
complex. For X locally contractible, one can prove H"(X, Rx) = Hg, (X, R), where Rx is

the locally constant sheaf.

e For easier computation, one might choose a greater class of objects to resolve a given O-
module, compared to injective resolutions. Obviously, the aim is to compute the same thing!
There are some options, e.g., acyclic resolutions and some, that particularly work only
in O-Mod, i.e., by using “flabby” sheaves, which even give canonical resolutions ”Godement

resolution” ... more will come next year.

Definition 10.4. A O-module T is called acyclicﬂ iff HY(X,Z) = 0 for all n > 0. For an O-
module F, an acyclic resolution is an exact sequence 0 — F — IV — I' — ..., such that I" is

acyclic for every n > 0. We denote the sequence by 0 — F — 1°.

Example. Injective O-modules are acyclic by design and injective resolutions of O-modules are

acyclic resolutions.
Theorem 10.5. Let 0 — F — Z* be an acyclic resolution of an O-module F. Then,
H"(X,F)= H" (I'(X,Z°)),

canonical, for alln > 0. The R-module H"(I'(X,Z°®)) denotes the cohomology of a complez, i.e.,

 ker(D(X,Z7) — D(X,I™)))
T im(T(X, 1) S (X, I7)

HY(I'(X,Z%) := H"(0 - I'(X,7°) - T(X,Z") — ...):

Proof. For the case n = 0, we apply I'(X, —) to the exact sequence 0 — F — Z° — Z'. This yields

the exact sequence
0 — I'(X, F) — I'(X, 1% — (X, 1Y).

Therefore we have
H(X,F) =T(X,F) =ker(I'(X,1°) - T(X,I")) = H(I'(X,Z%)),
which shows the statement. For the case n > 1, we set Z7! := K := F and for p > 1

KP := coker(ZP~2 — TP~ 1) 2 im (2P~ — TP) = ker(ZP — IP+1),

We can define acyclicity more generally for any left-exact functor F : C — D, for C having enough injectives: an
object Z is called F-acyclic, iff R"F(Z) =0 for all n > 0.
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where the isomorphism is induced by the map ZP~! — ZP. From the exact sequence 0 — P —

IP — IP*! we obtain in the same manner as above
H°(X,KP) = ker(H°(X,TP) — H°(X,TPT1)) (10.2)
for all p > 1. This yields also H°(X, KP) < H°(X,ZP) and so
im(H°(X, 7" ") — HY(X,K")) = im(H°(X,Z"') = H°(X,T")). (10.3)

The SES
0 K Ir Kkptt —— 0

yields the long exact sequence of cohomology

=0
. —— H"(X,KP) —— H"(X,I’) —— H™(X,Krt1)

H"WY(X,KP) —— H"TN(X,TP) —— H"TY(X, KPHh) —— ..
N—————
=0

~Y

where the cohomology vanishes as marked above because of acyclicity. Hence, H™(X, KPH1) =

H™ (X, KP). Also, from the long exact sequence (for p =n — 1)

. — HY(X, 7' —— H'(X,K") — H'(X,Kk»!) — H'(X, 7)) —— ...,
=0

we get
HO(X,K")

1 n—1 ~
XK = @0 (X, 7y — HO(X, k7))

with the homomorphism theorem. Inductive by using the isomorphism derived above, and since
F = K°, we obtain

HY(X,F)=H"(X,K% =...2 HY(X,K")
~ HO(X,K")
T im(HO(X,Zr 1) — HO(X,Kn))

where we used ((10.2]) and ((10.3)). O

Theorem 10.6. Let @ : (X,0x) — (Y,Oy) be a morphism of ringed spaces over R. Then, the

direct image functor ®, : Ox-Mod — Oy-Mod is left exact and there is a universal d-functor

= H"(I'(X, I*))

(R"®, : Ox-Mod — Oy-Mod, 6)n20 over ®,. Hence, for every short exact sequence

0 F F F 0
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of O-modules, there is a long exact sequence

oOo—— o F —— & F —— o, F”

0
R'®.F —— R'®.F —— R'®,F"

)
R2®,F —— R2®0,.F —— R2O, F' —— ...

of Oy -modules.

Proof. Let ¢ : X — Y be the underlying continuous map of ® and 0 — F — F — F” — 0 be a
SES in Ox-Mod, V C Y open and U := ¢! (V). Then,

0 — I'(U,F) —— T(U,F) —— (U, F").
is exact in R-mod and since I'(U, F) = T'(V, ®,.F) (analogue for F', F”') the sequence
0 — = TV, 0, F) — T(V,8.F) —— T(V, &, F").

is also exact in R-mod. Because V is arbitrary, U is arbitrary and therefore

0 —— o, F . F o, F".

is exact in Oy-Mod. Hence, @, is left exact. The existence of the universal §-functor follows from
the talk last week. O

Remark. This can be seen as a generalization of the cohomology functor we introduced above. We
recover H™(X, —) by setting Y = {x} to be the one-point space and Oy (Y) = R (since there is only
one stalk). For ® : X — Y, the constant morphism, we obtain R"®, = H"(X,—), since we can
identify the category of Oy -modules with the category of R-modules.

Theorem 10.7. Let IV be the composite functor
O-Mod —— Zx-Mod —— Z-mod,

where F denotes the forgetful functor, I' := T'(X,—) and Zx the constant sheaf with values in Z.

Then, there is a natural isomorphism of §-functors
R'T" = (R'T) o F = H"(X, F(-)).

In other words, we may compute the cohomology of an O-module, as if it was just a sheaf of Abelian

groups and also make use of resolutions in this category.
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Proof. We may apply theory from last week’s talk. To do so, we have to check, that F' transforms
injectives in O-Mod into acyclic Z x-modules, see chapter 5, 3.13 and 3.15 in [1]. O
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